Stoichiometry

define "Stoichiometry":

COEFFICIENTS from a balanced chemical equation are used as Molar Ratios to relate substances in a reaction

Given this equation: $\mathbf{N}_{\mathbf{2}} \mathbf{+} \mathbf{3} \mathbf{H}_{\mathbf{2}} \boldsymbol{\rightarrow} \mathbf{2} \mathbf{N H}_{\mathbf{3}}$, write the following molar ratios:
a) $\mathrm{N}_{2}: \mathrm{H}_{2}$
b) $\mathrm{N}_{2}: \mathrm{NH}_{3}$
c) $\mathrm{H}_{2}: \mathrm{NH}_{3}$

Given this chemical equation: $\mathbf{8} \mathbf{H}_{\mathbf{2}}+\mathbf{S}_{\mathbf{8}} \rightarrow \mathbf{8} \mathbf{H}_{\mathbf{2}} \mathbf{S}$, write the molar ratios:
a) $\mathrm{H}_{2}: \mathrm{H}_{2} \mathrm{~S}$
b) $\mathrm{H}_{2}: \mathrm{S}_{8}$
c) $\mathrm{H}_{2} \mathrm{~S}: \mathrm{S}_{8}$

Answer the following questions for this equation: $\mathbf{2} \mathbf{H}_{\mathbf{2}}+\mathbf{O}_{\mathbf{2}} \boldsymbol{\rightarrow} \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}$
a) What is the $\mathrm{H}_{2}: \mathrm{H}_{2} \mathrm{O}$ molar ratio?
b) Suppose there are 20 moles of H_{2} and an excess of O_{2}, how many moles of $\mathrm{H}_{2} \mathrm{O}$ could be produced?
c) What is the $\mathrm{O}_{2}: \mathrm{H}_{2} \mathrm{O}$ molar ratio?
d) Suppose there are 20 moles of O_{2} and enough H_{2}, how many moles of $\mathrm{H}_{2} \mathrm{O}$ could be produced?

Use this equation: $\mathbf{N}_{\mathbf{2}} \mathbf{+} \mathbf{3} \mathbf{H}_{\mathbf{2}} \mathbf{-} \mathbf{2} \mathbf{N H}_{\mathbf{3}}$, for the following problems:
a) If 1 mole of N_{2} is consumed, how many moles of NH_{3} could be produced?
b) If 10 moles of NH_{3} were produced, how many moles of N_{2} would be required?
c) If 3.00 moles of H_{2} were used, how many moles of NH_{3} would be made?
d) If 0.600 moles of NH_{3} were produced, how many moles of H_{2} are required?

When solving problems in chemistry, the following point system will be used to grade work:
1 Point $\left\{\begin{array}{cc}\text { List what you know } \\ \bullet & \text { List the quantities with units in the problem } \\ \bullet & \text { Identify what you are solving for } \\ \bullet & \text { Calculate the molar masses (as necessary) }\end{array}\right.$
2 Point $\left\{\begin{array}{c}\text { Set up the problem } \\ \bullet \\ \bullet \text { - Write down setup with units and be sure units cancel }\end{array}\right.$

- Write down setup with units and be sure units cancel

Solve/Calculate

- Calculate and verify

3 Point $\{$ - Round to appropriate Sig Figs (1/2 point)

- Write answer with the units and the identity of the substance
- Underline or circle the final answer

Mole-to-Mole Stoichiometry

Quantitative Relationships in Chemical Equations

When we balance a chemical equation, we are satisfying the law of conservation of mass; that is, we are making sure that there are the same number of atoms of each element on both sides of the equation. The coefficients we place in front of the substances in an equation are very important because they tell us the mole ratio of the substances in that reaction. For instance, the balanced equation...

$$
\text { hydrogen gas }+ \text { oxygen gas } \rightarrow \text { liquid water }
$$

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

can be thought of in terms of moles...

$$
2 \text { moles } \mathrm{H}_{2}(\mathrm{~g})+1 \text { mole } \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \text { moles } \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

1. \qquad $\mathrm{Ca}(\mathrm{s})+$ \qquad $\mathrm{N}_{2}(\mathrm{~g}) \rightarrow$ \qquad $\mathrm{Ca}_{3} \mathrm{~N}_{2}(\mathrm{~s})$
a. How many moles of $\mathrm{Ca}_{3} \mathrm{~N}_{2}$ can be made from 16.8 moles of Ca ?
b. If you need to make 34.4 moles of $\mathrm{Ca}_{3} \mathrm{~N}_{2}$, how many moles of N_{2} will you need?
2. \qquad Fe(s) + \qquad $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ \qquad $\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})$
a. How many moles of O_{2} will react with 42.5 moles of Fe ?
b. If you need to make 1.56 moles of $\mathrm{Fe}_{3} \mathrm{O}_{4}$, how many moles of Fe will you need?
3. \qquad $\mathrm{FeCl}_{2}(\mathrm{aq})+$ \qquad $\mathrm{KOH}(\mathrm{aq}) \rightarrow$ \qquad $\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})+$ \qquad $\mathrm{KCl}(\mathrm{aq})$
a. How many moles of KOH will react with 86.2 moles of FeCl_{2} ?
b. If you need to make 12.4 moles of KCl , how many moles of FeCl_{2} will you need?
4. \qquad $\mathrm{Cu}(\mathrm{s})+$ \qquad $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ \qquad $\mathrm{Cu}_{2} \mathrm{O}$ (s)
a. How many moles of $\mathrm{Cu}_{2} \mathrm{O}$ can be made from 25.6 moles of Cu ?
b. How many moles of O_{2} does it take to produce 214 moles of $\mathrm{Cu}_{2} \mathrm{O}$?
5. \qquad $K(s)+$ \qquad $\mathrm{Cl}_{2}(\mathrm{~g})+$ \qquad $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ \qquad $\mathrm{KClO}_{3}(\mathrm{~s})$
a. How many moles of KClO_{3} can be made from 89 moles of O_{2} ?
b. If you have 24.6 moles of Cl_{2}, how many moles of KClO_{3} can you produce?
6. \qquad $\mathrm{NH}_{3}(\mathrm{~g})+$ \qquad $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow$ \qquad $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(\mathrm{~s})$
a. How many moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ can be made from 15.8 moles of NH_{3} ?
b. If you have 462 moles of NH_{3}, how many moles of $\mathrm{H}_{2} \mathrm{~S}$ do you need?
7. \qquad $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+$ \qquad $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow$ \qquad $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
a. How many moles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ can be made from 6.3 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
b. How many moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ does it take to make 7.2 moles of $\mathrm{H}_{2} \mathrm{O}$?
c. If you have 588 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$, how many moles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ can you produce?

Mass-to-Mole (2-Step) Stoichiometry

1. How many moles of HNO_{3} will be produced when 51 g of $\mathrm{N}_{2} \mathrm{O}_{5}$ reacts:
$\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}$
2. How many moles of NaBr will be produced when 71 g of bromine reacts:
_ $\mathrm{Br}_{2}+\ldots \mathrm{NaI} \rightarrow$ _ $\mathrm{NaBr}+\ldots \mathrm{I}_{2}$
3. How many grams of HCl are needed to completely react with .36 mol of lead?
$\ldots \mathrm{Pb}_{+} \ldots \mathrm{HCl} \rightarrow$ _ $\mathrm{PbCl}_{2}+\ldots \mathrm{H}_{2}$
4. What mass of oxygen will be needed to react with .84 mol of $\mathrm{C}_{3} \mathrm{H}_{8}$:
$\ldots \mathrm{C}_{3} \mathrm{H}_{8}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
5. Carbon will react with zinc oxide to produce zinc and carbon dioxide. How many moles of carbon dioxide will be produced if 157 g of ZnO is completely reacted?
$__{-} \mathrm{C}+\ldots \mathrm{ZnO} \rightarrow \ldots \mathrm{Zn}+\ldots \mathrm{CO}_{2}$
6. How many moles of water will be consumed if 44 g of calcium hydroxide are produced:

$$
\ldots \mathrm{CaH}_{2}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{Ca}(\mathrm{OH})_{2}+\ldots \mathrm{H}_{2}
$$

7. What mass of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ will be consumed if 2.35 mol of oxygen reacts:

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

8. Iron will react with oxygen to produce iron (III) oxide. How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ will be produced if . 18 mol of Fe reacts? (Don't forget to write a balanced equation.)
9. Nitrogen can react with hydrogen in a synthesis reaction to produce ammonia (NH_{3}). How many moles of nitrogen will be needed to produce 48 g of ammonia $\left(\mathrm{NH}_{3}\right)$? (Don't forget to write a balanced equation.)

Mass-to-Mass Stoichiometry

Example: What is the mass of potassium chloride produced from 4.5 g of barium chloride?
\qquad

Example: What mass of sodium hydroxide is produced when .11 g of sodium reacts with water?
_ $\mathrm{Na}+$ _ $\mathrm{H}_{2} \mathrm{O} \rightarrow$ _ $\mathrm{NaOH}+$ _ H_{2}

Example: What mass of nitrogen is produced from the decomposition of 145 g sodium azide?
__ $\mathrm{NaN}_{3} \rightarrow$ _ $\mathrm{Na}+\ldots \mathrm{N}_{2}$

You Try!: If 16.8 g of hydrogen gas react with oxygen, what mass of water vapor is produced?
$-\mathrm{H}_{2}{ }^{+}$_ $\mathrm{O}_{2} \rightarrow$ _ $\mathrm{H}_{2} \mathrm{O}$

You Try!: What mass of sulfur dioxide is necessary to react with 11.4 g of hydrogen sulfide?
_ $\mathrm{SO}_{2}+\ldots \mathrm{H}_{2} \mathrm{~S} \rightarrow$ _ $\mathrm{S}+\ldots \mathrm{H}_{2} \mathrm{O}$

Mass-to-Mass (3 Step) Stoichiometry Problem Solving

1. Determine the mass of lithium hydroxide produced when .38 g of lithium nitride reacts with water.

$$
\mathrm{Li}_{3} \mathrm{~N}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+3 \mathrm{LiOH}
$$

2. Find the mass of sugar $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ required to produce 1.82 g of carbon dioxide gas.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}+2 \mathrm{CO}_{2}
$$

3. What mass of oxygen is necessary for the reaction of 425 g of sulfur?
$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
4. Find the mass of S_{8} required to produce 2.47 g of sulfur dioxide gas.

$$
\mathrm{S}_{8}+8 \mathrm{O}_{2} \rightarrow 8 \mathrm{SO}_{2}
$$

5. Acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ burns in oxygen to produce carbon dioxide and water. What mass of carbon dioxide is produced when 1.6 g of oxygen are consumed?

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

6. What mass of sodium chloride is produced when chlorine reacts with .29 g of sodium iodide?
\qquad $\mathrm{NaI}+\ldots \mathrm{Cl}_{2} \rightarrow \ldots \mathrm{NaCl}+\ldots \mathrm{I}_{2}$
7. Find the mass of calcium hydroxide produced when .64 g of calcium carbide reacts with water.

$$
\ldots \mathrm{CaC}_{2}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{Ca}(\mathrm{OH})_{2}+\ldots \mathrm{C}_{2} \mathrm{H}_{2}
$$

8. How many grams of oxygen will react with 277 g of carbon monoxide to produce carbon dioxide?

$$
\ldots \mathrm{CO}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}
$$

9. What mass of hydrogen gas is produced if 225 g of iron reacts with hydrochloric acid to produce iron (II) chloride and hydrogen gas? (Don't forget to write a balanced equation.)

Stoichiometry of Reactions Lab: $\mathrm{NaHCO}_{3}+\mathrm{CH}_{3} \mathrm{COOH}$

Learning Target:

- I can experimentally determine the quantity (moles) of reactants and products in a reaction.
- I can analyze experimental data to determine the theoretical and percent yield of products.

Procedure:

See textbook pages 750-753.

Data:

Material	Mass (g)
Empty evaporating dish and watch glass	
Evaporating dish, watch glass, and NaHCO_{3}	
Heating 1: Evaporating dish, watch glass, and	
$\mathrm{NaCH}_{3} \mathrm{COO}$	
Heating 2: Evaporating dish, watch glass, and	
$\mathrm{NaCH}_{3} \mathrm{COO}$	

Data Analysis:

$$
\mathrm{NaHCO}_{3}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{NaCH}_{3} \mathrm{COO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

1) Calculate the molar mass of NaHCO_{3} and $\mathrm{NaCH}_{3} \mathrm{COO}$:

$$
\begin{array}{ll}
\mathrm{NaHCO}_{3}: & \mathrm{g} / \mathrm{mol} \\
\mathrm{NaCH}_{3} \mathrm{COO}: & \mathrm{g} / \mathrm{mol}
\end{array}
$$

2) Calculate the mass of NaHCO_{3} from the experimental data:
3) Convert the mass of NaHCO_{3} to moles of NaHCO_{3} :
4) Use the molar ratios to convert between the moles of NaHCO_{3} (Step 3) to moles of $\mathrm{NaCH}_{3} \mathrm{COO}$:
5) Convert moles of $\mathrm{NaCH}_{3} \mathrm{COO}$ (Step 4) to calculate the theoretical mass of $\mathrm{NaCH}_{3} \mathrm{COO}^{2}$ produced:
6) Compare the mass of $\mathrm{NaCH}_{3} \mathrm{COO}$ actually obtained from the experimental data:
7) Calculate the percent yield:

$$
\begin{equation*}
\text { Percent Yield }=\frac{\text { Actual Yield (Step 6) }}{\text { Theoretical Yield (Step 5) }} \mathrm{x} \tag{100}
\end{equation*}
$$

Stoichiometry $\mathrm{Lab}: \mathrm{SrCl}_{2}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Learning Targets

- I can write a chemical equation for the precipitation reaction of strontium chloride and sodium carbonate.
- I can apply gravimetric methods to calculate the mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in a solution of unknown concentration.

Procedure:

Read the background information and procedure on page 744-747

Data:

Volume of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution added	
Volume of SrCl_{2} solution added	
Mass of dry filter paper	
Mass of beaker with paper towel	
Mass of beaker with paper towel, filter paper, and precipitate	

Data Analysis and Interpretation:

1) Predict the products and write a balanced chemical equation for the precipitation reaction of strontium chloride and sodium carbonate. Be sure to add states of matter ($\mathrm{s}, \mathrm{l}, \mathrm{g}, \mathrm{aq}$) to indicate which product is the precipitate.
2) Calculate the mass of the dry precipitate from the lab data:
3) Calculate the number of moles of precipitate:
4) Using stoichiometry, calculate how many moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were present in the 15 mL sample:
5) There are .30 mol of SrCl_{2} in every 1000 mL of solution. Calculate the number of moles of SrCl_{2} added based on the volume of SrCl_{2} added.
6) How would the calculated results vary if the precipitate was not completely dry?
7) How many grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were present in the 15 mL sample?

Stoichiometry: Mixed Problem Solving

$2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$

1. How many moles of O_{2} is produced if 2.50 mol of KClO_{3} completely decomposes?
2. How many grams of KCl is produced if 2.50 g of KClO_{3} is decomposed?
3. How many moles of KClO_{3} is used to produce 10 moles of O_{2} ?
4. How many moles of KCl is produced if 15 g of KClO_{3} is used?
5. How many grams of O_{2} are produced if 5 moles of KClO_{3} is used?
6. How many moles of O_{2} is produced if 10 g of $\mathrm{KClO3} \mathrm{~s}$ used?
7. How many moles of water will be produced if 10.0 g of lithium hydroxide react?

$$
\mathrm{LiOH}+\mathrm{HBr} \rightarrow \mathrm{LiBr}+\mathrm{H}_{2} \mathrm{O}
$$

8. If 45 grams of ethylene react, what mass of carbon dioxide gas will be produced?

$$
\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

9. What mass of hydrogen gas is produced if .50 moles of acid react?

$$
\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{H}_{2}+\mathrm{MgCl}_{2}
$$

10. If you start with 5.5 moles of magnesium, how many moles of sodium will be produced?

$$
\mathrm{Mg}+2 \mathrm{NaF} \rightarrow \mathrm{MgF}_{2}+2 \mathrm{Na}
$$

11. The following reaction occurs when an automobile battery is charged:

$$
\ldots \mathrm{PbSO}_{4}(\mathrm{~s})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \ldots \mathrm{PbO}_{2}(\mathrm{~s})+\ldots \mathrm{Pb}(\mathrm{~s})+\ldots \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

a. Balance the equation.
b. How many grams of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ are produce when 68.1 g of lead (II) sulfate react?
12. Hydrogen gas can be made by reacting methane $\left(\mathrm{CH}_{4}\right)$ with high-temperature steam:

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

How many moles of hydrogen are produced when 158 g of methane reacts with steam?
13. Lithium nitride reacts with water to form ammonia and aqueous lithium hydroxide:

$$
\mathrm{Li}_{3} \mathrm{~N}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{LiOH}(\mathrm{aq})
$$

a. What mass of water is needed to react with 32.9 g of $\mathrm{Li}_{3} \mathrm{~N}$?
b. When the above reaction takes place, how many moles of NH_{3} are produced?

Basic Stoichiometry PhET Lab

Let's make some sandwiches!

Introduction:

When we bake/cook something, we use a specific amount of each ingredient. Imagine if you made a batch of cookies and used way too many eggs, or not enough sugar. YUCK! In chemistry, reactions proceed with very specific ratios. The study of these ratios is stoichiometry.

Reactants, Products

Procedure: PhET Simulations \rightarrow Play with the Sims \rightarrow Chemistry \rightarrow Reactants, Products, and

Part 1: Making Sandviches:
Sandwich Shop

1. The Cheese Sandwich be limiting, while the other will be in excess. Take some time and familiarize yourself with the simulation.
2. Set the reaction to a simple mole ratio of $2: 1: 1$

3. Complete the table below while making tasty cheese sandwiches:

Bread Used	Cheese Used	Sandwiches Made	Excess Bread	Excess Cheese
5 slices	5 slices			
4 slices	3 slices			
		2 sandwiches	1 slice	0 slices
6 slices		3 sandwiches		4 slices

Part 2: Real Chemical Reactions:

Real Reaction

Now let's work with real chemical reaction, one that creates a very entertaining BOOM!
4. Balance the equation for the reaction of hydrogen and oxygen to produce water?
\qquad $\mathrm{H}_{2}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}$
5. Complete the table below while making water $\mathrm{H}_{2} \mathrm{O}$ from hydrogen H_{2} and oxygen O_{2} :

Hydrogen Molecules $\mathbf{H}_{\mathbf{2}}$	Oxygen Molecules $\mathbf{O}_{\mathbf{2}}$	Water Molecules $\mathbf{H}_{\mathbf{2}} \mathbf{O}$	Excess $\mathbf{H}_{\mathbf{2}}$	Excess $\mathbf{O}_{\mathbf{2}}$
4 molecules	4 molecules			
7 molecules	6 molecules			
		4 molecules	0 molecules	0 molecules
9 moles	8 moles			
4.0 moles	2.5 moles		1 moles	0 moles
1.5 moles		1.5 moles	0 moles	0 moles

6. Notice that the labels changed from molecules to moles. This does not change the mole ratio, as a mole is simply a large number of molecules. How many molecules is a mole? \qquad

Now try producing ammonia, a very important chemical in industry and farming.
7. Balance the equation for the production of ammonia? __ $\mathrm{N}_{2}+\ldots \mathrm{H}_{2} \rightarrow \ldots \mathrm{NH}_{3}$
8. Complete the table below:

Moles $\mathbf{N}_{\mathbf{2}}$	Moles $\mathbf{H}_{\mathbf{2}}$	Moles $\mathbf{N H}_{\mathbf{3}}$	Excess $\mathbf{N}_{\mathbf{2}}$	Excess $\mathbf{H}_{\mathbf{2}}$
3 moles	6 moles			
6 moles	3 moles	4 moles	2 moles	0 moles
1.5 moles	4.0 moles			

Combustion of hydrocarbons like methane CH_{4} produces two products, water and carbon dioxide CO_{2}.
9. Balance the equation for the combustion of methane? __ $\mathrm{CH}_{4}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
10. Complete the table below: WATCH FOR FRACTIONS

$\mathrm{mol} \mathrm{CH}_{\mathbf{4}}$	$\mathbf{m o l ~ O}_{\mathbf{2}}$	$\mathbf{m o l ~ C O}_{\mathbf{2}}$	$\mathbf{m o l ~ H} \mathbf{2}$	Excess $\mathbf{~ m o l ~ C H}_{\mathbf{4}}$	Excess mol $\mathbf{O}_{\mathbf{2}}$
4 mol	4 mol				
3 mol	6 mol				
		2 mol	4 mol		
	3 mol				

Basic Stoichiometry

11. Load the "Reactants, Products, and Leftovers" simulation and work through each of the levels of the Game!
12. For the reaction $P_{4}+6 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{PCl}_{3}$, determine how many moles of chlorine Cl_{2} would be needed to react with 3 moles of phosphorus P_{4} to entirely use up all the phosphorus.
13. If 5 moles of P_{4} reacted with 22 moles Cl_{2} according to the above reaction, determine:
a. How many moles PCl_{3} are produced
a) \qquad

In reality, reactants don't have to react in perfect whole-numbers of moles. Usually one reactant gets entirely used up (and determines how much product is made). For instance, when solid, metallic aluminum Al and red, liquid bromine Br_{2} are brought together, they make a white solid according to the reaction $2 A l+3 B r_{2} \rightarrow 2 A l B r_{3}$. If 5.0 moles of aluminum Al was reacted with 10 moles bromine Br_{2}, all five moles of aluminum would react, with only 7.5 moles bromine. ($2: 3$ mole ratio) This would produce only 5.0 moles of AlBr_{3}.
14. Now assume 3 moles Al and 4 moles Br_{2} react
a. Which chemical is the "limiting reactant"?
a) \qquad
b. Which chemical must be the "excess reactant"?
b) \qquad
c. How many moles of AlBr_{3} can be produced?
c) \qquad
15. What is the maximum amount (in moles) of NaCl that can be produced from 4.5 moles of Na and 3.5 moles of Cl_{2} according to the reaction __ $\mathrm{Na}+\ldots \mathrm{Cl}_{2} \rightarrow \ldots \mathrm{NaCl}$ (you need to balance the equation)?

Limiting Reactants

define Limiting Reactant:

Reasons why a reactant would be "limited":
define Excess Reactant:

Reasons why a reactant would be "in excess":

SOLVING LIMITING REACTANT PROBLEMS

1. Write a balanced equation for the reaction
2. Calculate the amount of product formed based on the reactant amounts ($\mathbf{2}$ stoichiometry problems)
3. Determine the reactant that produces less product (limiting reactant)
4. Determine excess reactant (if needed)

Example: 90.0 g of FeCl_{3} reacts with $\mathbf{5 2 . 0 \mathrm { g } \mathrm { H }} \mathbf{2} \mathrm{S}$. What is the limiting reactant? What is the mass of HCl produced?
($\mathrm{FW} \mathrm{FeCl}_{3}=162.00 \mathrm{~g} / \mathrm{mol}, \mathrm{FW} \mathrm{H}_{2} \mathrm{~S}=34.10 \mathrm{~g} / \mathrm{mol}, \mathrm{FW} \mathrm{HCl}=36.50 \mathrm{~g} / \mathrm{mol}$)

$$
2 \mathrm{FeCl}_{3(\mathrm{aq)}}+3 \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{aq})} \rightarrow 6 \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{Fe}_{2} \mathrm{~S}_{3(\mathrm{~s})}
$$

Example 2: A solution containing $3.50 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}$ is mixed with a solution of $6.40 \mathrm{~g} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$. How many grams of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are formed?
($\mathrm{FW} \mathrm{Na} 3{ }_{3} \mathrm{PO}_{4}=163.94 \mathrm{~g} / \mathrm{mol}, \mathrm{FW} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=261.34 \mathrm{~g} / \mathrm{mol}, \mathrm{FW} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}=601.93 \mathrm{~g} / \mathrm{mol}$)

$$
2 \mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})}+3 \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \rightarrow 6 \mathrm{NaNO}_{3(\mathrm{aq})}+\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}
$$

Solve for the limiting reactant to determine the mass of product (grams $\left.\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)$ formed:

You Try! A 2.00g sample of ammonia $\left(\mathrm{NH}_{3}\right)$ is mixed with 4.00 g oxygen $\left(\mathrm{O}_{2}\right)$. What is the limiting reactant? How many grams of NO are produced?
($\mathrm{FW} \mathrm{NH}_{3}=17.0 \mathrm{~g} / \mathrm{mol}^{2} \mathrm{FW} \mathrm{O}_{2}=32.00 \mathrm{~g} / \mathrm{mol}, \mathrm{FW} \mathrm{NO}=30.0 \mathrm{~g} / \mathrm{mol}$)
$4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Limiting Reactant Problem Solving

1. Identify the limiting reactant if 1.22 g of O_{2} reacts with 1.05 g of H_{2} to produce water.

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

2. Identify the limiting reactant if 4.68 g of Fe reacts with 2.88 g of S to produce FeS.

$$
\mathrm{Fe}+\mathrm{S} \rightarrow \mathrm{FeS}
$$

3. If 4.1 g of Cr is heated with 9.3 g of Cl_{2}, what mass of CrCl_{3} will be produced?

$$
2 \mathrm{Cr}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{CrCl}_{3}
$$

Theoretical Yield:

Actual Yield:

Percent Yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%$

List some reasons why actual yield is lower than the theoretical yield:

1. Determine the percent yield for the reaction between 3.74 g of Na and excess oxygen if 5.34 g of $\mathrm{Na}_{2} \mathrm{O}_{2}$ is recovered.

THEORETICAL YIELD:

PERCENT YIELD:

2. What is the percent yield if 6.92 g of potassium reacts with 4.28 g of oxygen, and 7.36 g of potassium oxide is actually produced.

THEORETICAL YIELD:

PERCENT YIELD:
3. Determine the percent yield if 45.9 g of NaBr reacts with excess chlorine gas to produce 12.8 g of NaCl and an unknown quantity of bromine gas.
4. In a synthesis reaction, 2.00 g of hydrogen reacts with 4.00 g of nitrogen to produce ammonia $\left(\mathrm{NH}_{3}\right)$. If only 1.00 g of ammonia is actually collected, what is the percent yield?
5. In the laboratory, hydrochloric acid and sodium bicarbonate were reacted by mixing the two chemicals together and then evaporating the resulting solution to recover sodium chloride:

$$
\mathrm{NaHCO}_{3(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

The following data was recorded:

Mass of empty beaker	93.650 g
Mass of beaker and NaHCO_{3}	95.151 g
Mass of NaHCO_{3}	
Mass of beaker and NaCl	94.691 g
Mass of NaCl	

What is the percent yield of sodium chloride for this experiment?

Academic Chemistry: Stoichiometry 15

Percent Yield of Copper Pre Lab

Problem: What is the percent yield of copper metal in the reaction between copper (II) sulfate and iron? The following data was collected in lab:

Mass of $50-\mathrm{mL}$ beaker	26.292 g
Mass of $50-\mathrm{mL}$ beaker and iron filings	26.603 g
Mass of $150-\mathrm{mL}$ beaker	98.325 g
Mass of $150-\mathrm{mL}$ beaker and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	101.367 g
Mass of $150-\mathrm{mL}$ beaker and dry Cu product	98.673 g

$$
\mathrm{Fe}+\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}+5 \mathrm{H}_{2} \mathrm{O}
$$

1. Determine the limiting reactant (Fe or $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$):
2. What is the theoretical yield of copper metal?
3. From the sample data, what is the actual yield of copper?
4. Determine the percent yield:

Percent Yield of Copper Lab

Problem: What is the percent yield of copper metal in the reaction between copper (II) sulfate and iron?

Materials:

copper (II) sulfate pentahydrate $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$ iron filings	balance beakers ($100 \mathrm{~mL}, 250 \mathrm{~mL}$)
	graduated cylinder (10 mL)
	glass stirring rod
	hot plate

Procedure:

1. Determine the mass of a clean, dry 100 ml beaker. Record the mass in a neatly labeled data table.
2. Measure 12.5 grams of copper (II) sulfate pentahydrate - record the exact mass in your data table. Add the copper (II) sulfate pentahydrate to the beaker.
3. Measure 50 ml of water and add the water to the crystals in the beaker.
4. Place the beaker on the hot plate. Carefully heat the mixture, but do not allow it to boil.
5. Continue heating and stirring the mixture with the stirring rod until the crystals are completely dissolved. Use beaker tongs to remove the beaker from the hotplate.
6. Measure 2.24 grams of iron filings. Record the exact mass in your data table. Add the filings a little at a time to the hot copper (II) sulfate solution, stirring continuously. After you have finished adding the iron filings, allow the beaker to cool for 10 minutes.
7. Gently decant (remove the liquid) from the beaker. Do not disturb the solid at the bottom of the beaker.
8. Add about 10 ml of water to the solid in the 100 ml beaker, stirring vigorously. Allow the solid to settle and decant again.
9. Spread the solid over the bottom of the beaker and place the beaker on top of a paper towel with your name on it. Ask you teacher where you should set the beaker/paper towel set-up to dry overnight.
10. After the solid is completely dry, mass of the beaker and the solid copper. Record in your data table.

Data:

Mass of $50-\mathrm{mL}$ beaker	
Mass of $50-\mathrm{mL}$ beaker and iron filings	
Mass of $150-\mathrm{mL}$ beaker	
Mass of $150-\mathrm{mL}$ beaker and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	
Mass of $150-\mathrm{mL}$ beaker and dry Cu product	

Calculations:

$\mathrm{Fe}+\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}+5 \mathrm{H}_{2} \mathrm{O}$

1. How much copper should be produced if all of the copper (II) sulfate reacts?
2. How much copper should be produced if all the iron filings react?
3. What is the limiting reactant for this lab?
4. What is the theoretical yield?
5. Calculate the actual yield of copper?
6. Determine the percent yield for this experiment.
7. Suggest two specific sources of error as to why the yield is not perfectly 100% ?
8. Suggest some possible improvements to increase percent yield for this lab:

Academic Chemistry Stoichiometry Review

1. If 2.47 mol of HCl react, how many moles of water are produced?
\qquad
2. How many moles of O_{2} react if 5.4 g of CO_{2} is produced?

$$
\ldots \mathrm{CH}_{4}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

3. What mass of rust $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ forms if 8.7 mol of iron reacts with oxygen?

$$
\ldots \mathrm{Fe}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

4. How many moles of hydrogen gas react with 26.2 mol of oxygen?

$$
\ldots \mathrm{H}_{2}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{H}_{2} \mathrm{O}
$$

5. How many grams of KClO_{3} is produced if 5.0 mol of KCl reacts? $2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})} 2 \mathrm{KClO}_{3(\mathrm{~s})}$
6. Aqueous solutions of silver (I) nitrate reacts with barium chloride react to form silver (I) chloride and barium chloride.
a. Balance the equation: AgNO $_{3}+\ldots \mathrm{BaCl}_{2} \rightarrow$ _ $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{AgNO}_{3}$
b. What is the mass of AgCl is produced if 3.45 g of AgNO_{3} reacts with 2.14 g of BaCl_{2} ?
c. If only .95 g of silver chloride is actually produced, what is the percent yield?
7. Potassium chloride and oxygen react in a synthesis reaction to produce potassium chlorate.
a) Write a balanced chemical equation:
b) Determine the limiting reactant if 500 g KCl and $820 \mathrm{~g} \mathrm{O}_{2}$ react.
c) In the lab, 640 g of KClO_{3} are actually recovered. What is the percent yield?
8. Lab Application: Critical Thinking In a lab, magnesium metal reacts with hydrochloric acid and bubbles vigorously, producing hydrogen gas and magnesium chloride.

$$
\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

During lab, the following data was recorded:

Mass of test tube	2.51 g
Mass of test tube and magnesium	3.56 g

a. What is the mass of only the magnesium?
b. How many moles of hydrogen gas are produced?

Long Term Learning Target: I can relate chemical quantities of reactants and products in real world and laboratory applications of stoichiometry.

Date	Learning Target	Learning Activities Self-reflect and evaluate yourself as Beginning, Developing, Accomplished, or Exemplary and complete the corresponding target practice		What evidence supports that I am meeting the target and am ready to quiz/ test?
		Beginning/ Developing	Accomplished/ Exemplary	
$\begin{aligned} & \text { Mon, Tues } \\ & 2 / 23,2 / 24 \end{aligned}$	I can define and describe practical applications of stoichiometry. I can analyze molar ratios in a chemical reaction to determine the number of moles of reactants and products in a balanced chemical reaction.	Introduction to Stoichiometry Mole-to-Mole Stoichiometry		
		1 solve all on pg 2 1 POGIL Model 1 (\#1-7)	1 solve any 3 on pg 2 1 Research and design a poster with an illustration and brief description of a practical application of stoichiometry	
Weds 2/25	I can apply stoichiometry to convert between moles and mass of substances in a chemical reaction.	Mole-to-Mass Problem Solving		
		1 solve all on pg 3	1 solve any 4 problems (including \#8, 9) on pg 3 I POGIL Model 1 (\#8)	
Thurs 2/26	I can apply stoichiometry to convert between mass of two different substances in a chemical reaction.	Mass-to-Mass Problem Solving		
		1 solve any 8 on pg 5	1 solve any 4 on pg 5 (including \#9) 1 POGIL Model 2	
$\begin{gathered} \text { Fri } \\ 2 / 27 \end{gathered}$	I can apply stoichiometry to convert between mass of two different substances in a chemical reaction.	Mass-to-Mass Problem Solving		
		I continue Problem Solving	(pab: NaHCO_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$ (pg	
Mon, Tues 3/2, 3/3	I can relate chemical quantities of reactants and products in laboratory applications of stoichiometry.	Stoichiometry Lab		
		$\begin{array}{\|l} \hline 1 \text { Lab: } \mathrm{NaHCO}_{3} \text { and } \\ \mathrm{CH}_{3} \mathrm{COOOH}(\mathrm{pg} 6) \end{array}$	$\begin{aligned} & \text { Lab: } \mathrm{SrCl}_{2} \text { and } \mathrm{Na}_{2} \mathrm{CO}_{3} \\ & (\mathrm{pg} 7) \end{aligned}$	
Weds$3 / 4$	I can differentiate when to solve for moles/ mass of substances in a balanced chemical reaction.	Mixed Stoichiometry		
		1 solve all on pg 8-9	1 solve any 5 on pg 8-9 1 solve and create an Educreations tutorial for 1 stoichiometry stumper	

Date	Learning Target	Learning Activities Self-reflect and evaluate yourself as Beginning, Developing, Accomplished, or Exemplary and complete the corresponding target practice		What evidence supports that I am meeting the target and am ready to quiz/ test?
		Beginning/ Developing	Accomplished/ Exemplary	
Thurs $\begin{gathered} 3 / 5 \\ \text { Quiz Today } \\ \hline \end{gathered}$	I can differentiate when to solve for moles/ mass of substances in a balanced chemical reaction.	1 Quiz on Stoichiometry ($1,2,3$ steps) 1 Limiting Reactant PhET (pg 10-11)		
$\begin{aligned} & \text { Fri } \\ & 3 / 5 \end{aligned}$	I can calculate the theoretical yields of products by analyzing the limiting reactant.	L Solve all on pg 13	Reactants 1 solve any 2 on pg 13 1 Lab: Limiting Reactant Balloons	
Mon, Tues 3/9, 3/10	I can experimentally analyze the theoretical and percent yield of a chemical reaction.	1 Lab: Percent Yield (pg 16-18) 1 Percent Yield Lab data analysis (\#1-4 on pg 18) 1 solve all on pg 14-15		
Weds 3/11	I can relate chemical quantities of reactants and products in real world and laboratory applications of stoichiometry.	Stoichiometry P Ifinalize data analysis for Lab (\#5-8 on pg 18) $\frac{1}{1}$ see eoint system for practical applications of stoichiometry	ctical Applications 1 finalize data analysis for Lab (\#5-8 on pg 18) 1 solve and create an Educreations tutorial for 1 stoichiometry stumper	
Thurs 3/12	I can relate chemical quantities of reactants and products in real world and laboratory applications of stoichiometry.	1 Review (pg 19-20)		
$\begin{gathered} \text { Fri } \\ 3 / 13 \end{gathered}$	Test Test Retakes: The review must be completed and turned in for credit prior to taking the test.			

Beginning $=I$ need more help on this $-I$ don't really understand it at all!
Developing $=I$ kind of understand, but I need to spend more time reviewing/practicing.
Accomplished = I understand ! I'm confident and can explain what I've learned on a test.
Exemplary = I could teach someone who knows nothing about this target everything they need to know.

