Stoichiometry

define "Stoichiometry": _____

COEFFICIENTS from a balanced chemical equation are used as Molar Ratios to relate substances in a reaction

Given this equation: $N_2 + 3 H_2 \rightarrow 2 NH_3$, write the following molar ratios:a) $N_2 : H_2$ b) $N_2 : NH_3$ c) $H_2 : NH_3$ Given this chemical equation: $8 H_2 + S_8 \rightarrow 8 H_2 S$, write the molar ratios:a) $H_2 : H_2 S$ b) $H_2 : S_8$ c) $H_2 S : S_8$

Answer the following questions for this equation: $2 H_2 + O_2 \rightarrow 2 H_2O$

a) What is the H_2 : H_2O molar ratio?

b) Suppose there are 20 moles of H₂ and an excess of O₂, how many moles of H₂O could be produced?

c) What is the O_2 : H_2O molar ratio?

d) Suppose there are 20 moles of O_2 and enough H_2 , how many moles of H_2O could be produced?

Use this equation: $N_2 + 3 H_2 \rightarrow 2 NH_3$, for the following problems:

a) If 1 mole of N_2 is consumed, how many moles of NH_3 could be produced?

b) If 10 moles of NH_3 were produced, how many moles of N_2 would be required?

c) If 3.00 moles of H₂ were used, how many moles of NH₃ would be made?

d) If 0.600 moles of NH_3 were produced, how many moles of H_2 are required?

When solving problems in chemistry, the following point system will be used to grade work:

1 Point	 List what you know List the quantities with units in the problem Identify what you are solving for Calculate the molar masses (as necessary)
2 Point	 Set up the problem Set up dimensional analysis conversion factors or write formula Write down setup with units and be sure units cancel
3 Point	 Solve/Calculate Calculate and verify Round to appropriate Sig Figs (1/2 point) Write answer with the units and the identity of the substance Underline or circle the final answer
	Academic Chemistry: Stoichiometry 1

Mole-to-Mole Stoichiometry

Quantitative Relationships in Chemical Equations

When we balance a chemical equation, we are satisfying the law of conservation of mass; that is, we are making sure that there are the same number of atoms of each element on both sides of the equation. The coefficients we place in front of the substances in an equation are very important because they tell us the mole ratio of the substances in that reaction. For instance, the balanced equation...

hydrogen gas + oxygen gas \rightarrow liquid water

 $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(I)$

can be thought of in terms of *moles*...

2 moles $H_2(g) + 1$ mole $O_2(g) \rightarrow 2$ moles $H_2O(I)$

- 1. ____ Ca(s) + ____ N₂(g) \rightarrow ____ Ca₃N₂(s)
 - a. How many moles of $\mathsf{Ca}_3\mathsf{N}_2$ can be made from 16.8 moles of Ca_2
 - b. If you need to make 34.4 moles of Ca_3N_2 , how many moles of N_2 will you need?
- 2. ____ Fe(s) + ____ $O_2(g) \rightarrow$ ____ Fe₃ $O_4(s)$
 - a. How many moles of O_2 will react with 42.5 moles of Fe?
 - b. If you need to make 1.56 moles of Fe_3O_4 , how many moles of Fe will you need?
- 3. ____ FeCl₂(aq) + ____ KOH(aq) → ____ Fe(OH)₂(s) + ____ KCl(aq)
 a. How many moles of KOH will react with 86.2 moles of FeCl₂?
 b. If you need to make 12.4 moles of KCl, how many moles of FeCl₂ will you need?
- 4. $\underline{\qquad}$ Cu(s) + $\underline{\qquad}$ O₂(g) \rightarrow $\underline{\qquad}$ Cu₂O(s)
 - a. How many moles of Cu_2O can be made from 25.6 moles of $Cu_?$
 - b. How many moles of O_2 does it take to produce 214 moles of Cu_2O ?
- 5. $K(s) + Cl_2(g) + O_2(g) \rightarrow KClO_3(s)$
 - a. How many moles of $KClO_3$ can be made from 89 moles of O_2 ?
 - b. If you have 24.6 moles of Cl_2 , how many moles of $KClO_3$ can you produce?
- 6. $\operatorname{NH}_3(g) + \operatorname{H}_2S(g) \rightarrow \operatorname{(NH}_4)_2S(s)$
 - a. How many moles of $(NH_4)_2S$ can be made from 15.8 moles of NH_3 ?
 - b. If you have 462 moles of NH_3 , how many moles of H_2S do you need?

7. $Al_2O_3(s) + H_2SO_4(aq) \rightarrow Al_2(SO_4)_3(aq) + H_2O(l)$

- a. How many moles of $Al_2(SO_4)_3$ can be made from 6.3 moles of H_2SO_4 ?
 - b. How many moles of Al_2O_3 does it take to make 7.2 moles of H_2O ?
 - c. If you have 588 moles of Al_2O_3 , how many moles of $Al_2(SO_4)_3$ can you produce?

Mass-to-Mole (2-Step) Stoichiometry

- 1. How many moles of HNO₃ will be produced when 51 g of N₂O₅ reacts: N₂O₅ + H₂O \rightarrow 2 HNO₃
- How many moles of NaBr will be produced when 71 g of bromine reacts:
 __Br₂ + __Nal → __NaBr + __I₂
- 3. How many grams of HCl are needed to completely react with .36mol of lead? ____Pb +___ HCl →___PbCl₂ + ___H₂
- What mass of oxygen will be needed to react with .84mol of C₃H₈:
 C₃H₈ + O₂ → CO₂ + H₂O
- 5. Carbon will react with zinc oxide to produce zinc and carbon dioxide. How many moles of carbon dioxide will be produced if 157 g of ZnO is completely reacted?
 __C + __ZnO → __Zn + __CO₂
- 7. What mass of benzene (C₆H₆) will be consumed if 2.35mol of oxygen reacts: 2 C₆H₆ + 15 O₂ \rightarrow 12 CO₂ + 6 H₂O
- 8. Iron will react with oxygen to produce iron (III) oxide. How many grams of Fe_2O_3 will be produced if .18mol of Fe reacts? (Don't forget to write a balanced equation.)
- 9. Nitrogen can react with hydrogen in a synthesis reaction to produce ammonia (NH₃). How many moles of nitrogen will be needed to produce 48 g of ammonia (NH₃)? (*Don't forget to write a balanced equation*.)

Mass-to-Mass Stoichiometry

Example: What is the mass of potassium chloride produced from 4.5g of barium chloride?

 $\underline{\quad} K_2CO_3 + \underline{\quad} BaCl_2 \rightarrow \underline{\quad} KCl + \underline{\quad} BaCO_3$

Example: What mass of sodium hydroxide is produced when .11g of sodium reacts with water?

___Na + ___H₂O → ___NaOH + ___H₂

Example: What mass of nitrogen is produced from the decomposition of 145g sodium azide?

 $NaN_3 \rightarrow Na + N_2$

You Try!: If 16.8g of hydrogen gas react with oxygen, what mass of water vapor is produced?

 $\underline{\hspace{0.1cm}} H_2 + \underline{\hspace{0.1cm}} O_2 \rightarrow \underline{\hspace{0.1cm}} H_2 O_2$

You Try!: What mass of sulfur dioxide is necessary to react with 11.4g of hydrogen sulfide? $SO_2 + H_2S \rightarrow S + H_2O$

Mass-to-Mass (3 Step) Stoichiometry Problem Solving

- 1. Determine the mass of lithium hydroxide produced when .38g of lithium nitride reacts with water. Li₃N + 3 H₂O \rightarrow NH₃ + 3 LiOH
- 2. Find the mass of sugar (C₆H₁₂O₆) required to produce 1.82g of carbon dioxide gas. C₆H₁₂O₆ \rightarrow 2C₂H₆O + 2CO₂
- 3. What mass of oxygen is necessary for the reaction of 425g of sulfur? $S + O_2 \rightarrow SO_2$
- 4. Find the mass of S₈ required to produce 2.47g of sulfur dioxide gas. S₈ + 8 O₂ \rightarrow 8 SO₂
- Acetylene (C₂H₂) burns in oxygen to produce carbon dioxide and water. What mass of carbon dioxide is produced when 1.6g of oxygen are consumed?
 2 C₂H₂ + 5 O₂ → 4 CO₂ + 2 H₂O
- 6. What mass of sodium chloride is produced when chlorine reacts with .29g of sodium iodide? _____Nal + ___Cl_2 \rightarrow ____NaCl + ___l_2
- 7. Find the mass of calcium hydroxide produced when .64g of calcium carbide reacts with water. $CaC_2 + H_2O \rightarrow Ca(OH)_2 + C_2H_2$
- 8. How many grams of oxygen will react with 277g of carbon monoxide to produce carbon dioxide? $CO + O_2 \rightarrow CO_2$
- 9. What mass of hydrogen gas is produced if 225g of iron reacts with hydrochloric acid to produce iron (II) chloride and hydrogen gas? (*Don't forget to write a balanced equation*.)

Stoichiometry of Reactions Lab: $NaHCO_3 + CH_3COOH$

Learning Target:

- I can experimentally determine the quantity (moles) of reactants and products in a reaction.
- I can analyze experimental data to determine the theoretical and percent yield of products.

Procedure:

See textbook pages 750-753.

Data:

Material	Mass (g)
Empty evaporating dish and watch glass	
Evaporating dish, watch glass, and NaHCO $_3$	
Heating 1: Evaporating dish, watch glass, and	
NaCH ₃ COO	
Heating 2: Evaporating dish, watch glass, and	
NaCH ₃ COO	

Data Analysis:

$NaHCO_3 + CH_3COOH \rightarrow NaCH_3COO + H_2O + CO_2$

1) Calculate the molar mass of NaHCO₃ and NaCH₃COO:

NaHCO₃: _____g/mol

NaCH₃COO: _____g/mol

2) Calculate the mass of NaHCO₃ from the experimental data:

- 3) Convert the mass of NaHCO₃ to moles of NaHCO₃:
- 4) Use the molar ratios to convert between the moles of NaHCO₃ (Step 3) to moles of NaCH₃COO:
- 5) Convert moles of NaCH₃COO (Step 4) to calculate the theoretical mass of NaCH₃COO produced:
- 6) Compare the mass of NaCH₃COO actually obtained from the experimental data:
- 7) Calculate the percent yield:

Stoichiometry Lab: SrCl₂ and Na₂CO₃

Learning Targets

- I can write a chemical equation for the precipitation reaction of strontium chloride and sodium carbonate.
- I can apply gravimetric methods to calculate the mass of Na₂CO₃ in a solution of unknown concentration.

Procedure:

Read the background information and procedure on page 744-747

Data:

Volume of Na ₂ CO ₃ solution added	
Volume of SrCl ₂ solution added	
Mass of dry filter paper	
Mass of beaker with paper towel	
Mass of beaker with paper towel, filter paper, and	
precipitate	

Data Analysis and Interpretation:

- 1) Predict the products and write a balanced chemical equation for the precipitation reaction of strontium chloride and sodium carbonate. Be sure to add states of matter (s, l, g, aq) to indicate which product is the precipitate.
- 2) Calculate the mass of the dry precipitate from the lab data:
- 3) Calculate the number of moles of precipitate:
- 4) Using stoichiometry, calculate how many moles of Na₂CO₃ were present in the 15mL sample:
- 5) There are .30mol of SrCl₂ in every 1000mL of solution. Calculate the number of moles of SrCl₂ added based on the volume of SrCl₂ added.
- 6) How would the calculated results vary if the precipitate was not completely dry?
- 7) How many grams of Na_2CO_3 were present in the 15mL sample?

Stoichiometry: Mixed Problem Solving

$2 \text{ KClO}_3 (s) \rightarrow 2 \text{ KCl} (s) + 3 \text{ O}_2 (g)$

- 1. How many moles of O₂ is produced if 2.50 mol of KClO₃ completely decomposes?
- 2. How many grams of KCl is produced if 2.50 g of KClO₃ is decomposed?
- 3. How many moles of KClO₃ is used to produce 10 moles of O₂?
- 4. How many moles of KCl is produced if 15 g of KClO₃ is used?
- 5. How many grams of O₂ are produced if 5 moles of KClO₃ is used?
- 6. How many moles of O₂ is produced if 10 g of KClO3 s used?

- 7. How many moles of water will be produced if 10.0g of lithium hydroxide react? LiOH + HBr \rightarrow LiBr + H₂O
- 8. If 45 grams of ethylene react, what mass of carbon dioxide gas will be produced? $C_2H_4 + 3 O_2 \rightarrow 2 CO_2 + 2 H_2O$
- 9. What mass of hydrogen gas is produced if .50 moles of acid react? Mg + 2 HCl \rightarrow H₂ + MgCl₂
- 10. If you start with 5.5 moles of magnesium, how many moles of sodium will be produced? Mg + 2 NaF \rightarrow MgF₂ + 2 Na
- 11. The following reaction occurs when an automobile battery is charged:

$$bSO_4(s) + __H_2O(I) \rightarrow __PbO_2(s) + __Pb(s) + __H_2SO_4(aq)$$

- ___ PbSO₄(s) + __ a. Balance the equation.
- b. How many grams of sulfuric acid (H₂SO₄) are produce when 68.1g of lead (II) sulfate react?
- 12. Hydrogen gas can be made by reacting methane (CH₄) with high-temperature steam: $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$ How many moles of hydrogen are produced when 158g of methane reacts with steam?
- 13. Lithium nitride reacts with water to form ammonia and aqueous lithium hydroxide: Li₃N(s) + 3 H₂O(l) \rightarrow NH₃(g) + 3 LiOH(aq)
 - a. What mass of water is needed to react with 32.9g of Li₃N?
 - b. When the above reaction takes place, how many moles of NH₃ are produced?

Basic Stoichiometry PhET Lab

Let's make some sandwiches!

Introduction:

When we bake/cook something, we use a specific amount of each ingredient. Imagine if you made a batch of cookies and used way too many eggs, or not enough sugar. YUCK! In chemistry, reactions proceed with very specific ratios. The study of these ratios is *stoichiometry*.

Procedure: PhET Simulations \rightarrow Play with the Sims \rightarrow Chemistry \rightarrow Reactants, Products, and

Leftovers Run Now! If a yellow bar drops down in your browser, click on it and select "Allow Blocked Content"

Part 1: Making Sandviches: Sandwich Shop

1. The Cheese Sandwich is a simulation of a two-reactant *synthesis* reaction. In this case, one reactant will be *limiting*, while the other will be in excess. Take some time and familiarize yourself with the simulation.

1

2. Set the reaction to a simple mole ratio of 2:1:1

3. Complete the table below while making tasty cheese sandwiches:

Bread Used	Cheese Used	Sandwiches Made	Excess Bread	Excess Cheese
5 slices	5 slices			
4 slices	3slices			
		2 sandwiches	1 slice	0 slices
6 slices		3 sandwiches		4 slices

Part 2: Real Chemical Reactions:

Now let's work with real chemical reaction, one that creates a very entertaining BOOM! 4. Balance the equation for the reaction of hydrogen and oxygen to produce water?

$$H_2 + _O_2 \rightarrow _H_2O$$

5. Complete the table below while making water H_2O from hydrogen H_2 and oxygen O_2 :

Hydrogen Molecules H ₂	Oxygen Molecules O ₂	Water Molecules H ₂ O	Excess H ₂	Excess O ₂
4 molecules	4 molecules			
7 molecules	6 molecules			
		4 molecules	0 molecules	0 molecules
9 moles	8 moles			
		4 moles	1 moles	0 moles
4.0 moles	2.5 moles			
1.5 moles		1.5 moles	0 moles	0 moles

6. Notice that the labels changed from **molecules** to **moles**. This does not change the mole ratio, as a mole is simply a large number of molecules. How many molecules is a mole?

Now try producing **ammonia**, a very important chemical in industry and farming.

- 7. Balance the equation for the production of ammonia? $N_2 + H_2 \rightarrow NH_3$
- 8. Complete the table below:

Moles N ₂	Moles H ₂	Moles NH ₃	Excess N ₂	Excess H ₂
3 moles	6 moles			
6 moles	3 moles			
		4 moles	2 moles	0 moles
1.5 moles	4.0 moles			

Combustion of hydrocarbons like methane CH₄ produces two products, water and carbon dioxide CO₂.

9. Balance the equation for the combustion of methane? $_CH_4 + _O_2 \rightarrow _CO_2 + _H_2O_2$

10. Complete the table below: WATCH FOR FRACTIONS						
mol CH₄	mol O ₂	mol CO₂	mol H₂O	Excess mol CH ₄	Excess mol O ₂	
4 mol	4 mol					
3 mol	6 mol					
		2 mol	4 mol			
		3 mol				

Basic Stoichiometry

- 11. Load the "Reactants, Products, and Leftovers" simulation and work through each of the levels of the Game!
- 12. For the reaction $P_4 + 6Cl_2 \rightarrow 4PCl_3$, determine how many moles of chlorine Cl_2 would be needed to react with 3 moles of phosphorus P₄ to entirely use up all the phosphorus.
- 13. If 5 moles of P_4 reacted with 22 moles Cl_2 according to the above reaction, determine:
 - a. How many moles PCI_3 are produced

a)_____

In reality, reactants don't have to react in perfect whole-numbers of moles. Usually one reactant gets entirely used up (and
determines how much product is made). For instance, when solid, metallic aluminum Al and red, liquid bromine Br ₂ are brought
together, they make a white solid according to the reaction $2Al + 3Br_2 \rightarrow 2AlBr_3$. If 5.0 moles of aluminum Al was reacted with
10 moles bromine Br ₂ , all five moles of aluminum would react, with only 7.5 moles bromine. (2:3 mole ratio) This would produce
only 5.0 moles of AlBr ₃ .
14. Now assume 3 moles Al and 4 moles Br ₂ react

·
)

15. What is the maximum amount (in moles) of NaCl that can be produced from 4.5 moles of Na and 3.5 moles of Cl_2 according to the reaction $Na + Cl_2 \rightarrow NaCl$ (you need to balance the equation)?

Liniting Reactant: define Limiting Reactant: Reasons why a reactant would be "limited": define Excess Reactant: Reasons why a reactant would be "in excess": Sol VING LIMITING REACTANT PROBLEMS 1. Write a balanced equation for the reaction 2. Calculate the amount of product formed based on the reactant amounts (<u>2 stoichiometry problems</u>) 3. Determine the reactant that produces less product (limiting reactant) 4. Determine excess reactant (if needed)

What is the mass of HCl produced?

(FW FeCl₃ = 162.00g/mol, FW H₂S = 34.10g/mol, FW HCl = 36.50g/mol)

 $2 \operatorname{FeCl}_{3(aq)} + 3 \operatorname{H}_2S_{(aq)} \rightarrow 6 \operatorname{HCl}_{(aq)} + \operatorname{Fe}_2S_{3(s)}$

Solve for the limiting reactant:

Example 2: A solution containing 3.50g Na₃PO₄ is mixed with a solution of 6.40g Ba(NO₃)₂. How many grams of Ba₃(PO₄)₂ are formed?

(FW Na₃PO₄ = 163.94g/mol, FW Ba(NO₃)₂ = 261.34g/mol, FW Ba₃(PO₄)₂ = 601.93g/mol)

2 Na₃PO_{4(aq)} + 3 Ba(NO₃)_{2(aq)} → 6 NaNO_{3(aq)} + Ba₃(PO₄)_{2(s)}

Solve for the limiting reactant to determine the mass of product (grams $Ba_3(PO_4)_2$) formed:

You Try! A 2.00g sample of ammonia (NH₃) is mixed with 4.00g oxygen (O_2). What is the limiting reactant? How many grams of NO are produced?

(FW NH₃ = 17.0g/mol, FW O₂ = 32.00g/mol, FW NO = 30.0g/mol)

 $4 \text{ NH}_{3(g)} + 5 \text{ O}_2 \rightarrow 4 \text{ NO}_{(g)} + 6 \text{ H}_2\text{O}_{(g)}$

Limiting Reactant Problem Solving

1. Identify the limiting reactant if 1.22g of O₂ reacts with 1.05g of H₂ to produce water. 2 H₂ + O₂ \rightarrow 2 H₂O

2. Identify the limiting reactant if 4.68g of Fe reacts with 2.88g of S to produce FeS. Fe + S \rightarrow FeS

3. If 4.1g of Cr is heated with 9.3g of Cl₂, what mass of CrCl₃ will be produced? 2 Cr + 3 Cl₂ \rightarrow 2 CrCl₃

List some reasons why actual yield is lower than the theoretical yield:

 Determine the percent yield for the reaction between 3.74g of Na and excess oxygen if 5.34g of Na₂O₂ is recovered. THEORETICAL YIELD:

PERCENT YIELD:

2. What is the percent yield if 6.92g of potassium reacts with 4.28g of oxygen, and 7.36g of potassium oxide is actually produced.

THEORETICAL YIELD:

PERCENT YIELD:

3. Determine the percent yield if 45.9g of NaBr reacts with excess chlorine gas to produce 12.8g of NaCl and an unknown quantity of bromine gas.

4. In a synthesis reaction, 2.00g of hydrogen reacts with 4.00g of nitrogen to produce ammonia (NH₃). If only 1.00g of ammonia is actually collected, what is the percent yield?

5. In the laboratory, hydrochloric acid and sodium bicarbonate were reacted by mixing the two chemicals together and then evaporating the resulting solution to recover sodium chloride: NaHCO_{3(aq)} + HCl_(aq) \rightarrow NaCl_(aq) + CO_{2(g)} + H₂O_(l)

The following data was recorded:

Mass of empty beaker	93.650g
Mass of beaker and NaHCO $_3$	95.151g
Mass of NaHCO ₃	
Mass of beaker and NaCl	94.691g
Mass of NaCl	

What is the percent yield of sodium chloride for this experiment?

Percent Yield of Copper Pre Lab

Problem: What is the percent yield of copper metal in the reaction between copper (II) sulfate and iron?

The following data was collected in lab:

Mass of 50-mL beaker	26.292g
Mass of 50-mL beaker and iron filings	26.603g
Mass of 150-mL beaker	98.325g
Mass of 150-mL beaker and CuSO ₄ ·5H ₂ O	101.367g
Mass of 150-mL beaker and dry Cu product	98.673g

 $Fe + CuSO_4 \cdot 5H_2O \rightarrow FeSO_4 + Cu + 5H_2O$

1. Determine the limiting reactant (Fe or $CuSO_4$ ·5H₂O):

2. What is the theoretical yield of copper metal?

- 3. From the sample data, what is the actual yield of copper?
- 4. Determine the percent yield:

Percent Yield of Copper Lab

Problem: What is the percent yield of copper metal in the reaction between copper (II) sulfate and iron?

Materials:

```
copper (II) sulfate pentahydrate
(CuSO<sub>4</sub>·5H<sub>2</sub>O)
iron filings
```

balance beakers (100mL, 250 mL) graduated cylinder (10 mL) glass stirring rod hot plate

Procedure:

- 1. Determine the mass of a clean, dry 100 ml beaker. Record the mass in a neatly labeled data table.
- 2. Measure 12.5 grams of copper (II) sulfate pentahydrate record the exact mass in your data table. Add the copper (II) sulfate pentahydrate to the beaker.
- 3. Measure 50 ml of water and add the water to the crystals in the beaker.
- 4. Place the beaker on the hot plate. Carefully heat the mixture, but do not allow it to boil.
- 5. Continue heating and stirring the mixture with the stirring rod until the crystals are completely dissolved. Use beaker tongs to remove the beaker from the hotplate.
- 6. Measure 2.24 grams of iron filings. Record the exact mass in your data table. Add the filings a little at a time to the hot copper (II) sulfate solution, stirring continuously. After you have finished adding the iron filings, allow the beaker to cool for 10 minutes.
- 7. Gently decant (remove the liquid) from the beaker. Do not disturb the solid at the bottom of the beaker.
- 8. Add about 10 ml of water to the solid in the 100 ml beaker, stirring vigorously. Allow the solid to settle and decant again.
- 9. Spread the solid over the bottom of the beaker and place the beaker on top of a paper towel with your name on it. Ask you teacher where you should set the beaker/paper towel set-up to dry overnight.
- 10. After the solid is completely dry, mass of the beaker and the solid copper. Record in your data table.

Data:

Mass of 50-mL beaker	
Mass of 50-mL beaker and iron filings	
Mass of 150-mL beaker	
Mass of 150-mL beaker and CuSO ₄ ·5H ₂ O	
Mass of 150-mL beaker and dry Cu product	

Calculations:

$Fe + CuSO_4 \cdot 5H_2O \rightarrow FeSO_4 + Cu + 5H_2O$

- 1. How much copper should be produced if all of the copper (II) sulfate reacts?
- 2. How much copper should be produced if all the iron filings react?
- 3. What is the limiting reactant for this lab?
- 4. What is the theoretical yield?
- 5. Calculate the actual yield of copper?
- 6. Determine the percent yield for this experiment.
- 7. Suggest two specific sources of error as to why the yield is not perfectly 100%?
- 8. Suggest some possible improvements to increase percent yield for this lab:

Academic Chemistry Stoichiometry Review

1. If 2.47 mol of HCl react, how many moles of water are produced?

__ HCl + __ NaOH \rightarrow __ NaCl + __ H₂O

2. How many moles of O₂ react if 5.4g of CO₂ is produced?

 $_ CH_4 + _ O_2 \rightarrow _ CO_2 + _ H_2O$

3. What mass of rust (Fe₂O₃) forms if 8.7mol of iron reacts with oxygen? ____ Fe + ___O₂ \rightarrow ___ Fe₂O₃

4. How many moles of hydrogen gas react with 26.2 mol of oxygen?

 $_ H_2 + _ O_2 \rightarrow _ H_2O$

- 6. Aqueous solutions of silver (I) nitrate reacts with barium chloride react to form silver (I) chloride and barium chloride.
 - a. Balance the equation: $AgNO_3 + BaCl_2 \rightarrow Ba(NO_3)_2 + AgNO_3$
 - b. What is the mass of AgCl is produced if 3.45g of AgNO₃reacts with 2.14g of BaCl₂?
 - c. If only .95g of silver chloride is actually produced, what is the percent yield?
- 7. Potassium chloride and oxygen react in a synthesis reaction to produce potassium chlorate.
 - a) Write a balanced chemical equation:
 - b) Determine the limiting reactant if 500g KCl and 820g O₂ react.
 - c) In the lab, 640g of KClO₃ are actually recovered. What is the percent yield?

8. Lab Application: Critical Thinking

In a lab, magnesium metal reacts with hydrochloric acid and bubbles vigorously, producing hydrogen gas and magnesium chloride.
Mg + 2 HCl → MgCl₂ + H₂

During lab, the following data was recorded:

Mass of test tube
2.51 g
Mass of test tube and magnesium
3.56 g

a. What is the mass of *only* the magnesium?
b. How many moles of hydrogen gas are produced?

Long Term Learning Target: I can relate chemical quantities of reactants and products in real world and laboratory applications of stoichiometry.

Date	Learning Target	Learning Activities Self-reflect and evaluate yourself as Beginning, Developing, Accomplished, or Exemplary and complete the corresponding target practice		Progress Reflection What evidence supports that I am <u>meeting</u>
		Beginning/	Accomplished/	the target and am ready to quiz/ test?
		Developing	Exemplary	
Mon, Tues	I can define and describe practical applications of stoichiometry.	Introduction to Stoichiometry Mole-to-Mole Stoichiometry		
2/23, 2/24	I can analyze molar ratios in a chemical reaction to determine the number of moles of reactants and products in a balanced chemical reaction.	<pre>1 solve all on pg 2 1 POGIL Model 1 (#1-7)</pre>	solve any 3 on pg 2 Research and design a poster with an illustration and brief description of a practical application of stoichiometry	
Weds	I can apply stoichiometry to convert	Mole-to-Mass Problem Solving		
2/25	between moles and mass of substances in a chemical reaction.	<u>↓</u> solve <i>all</i> on pg 3	I solve any 4 problems (including #8, 9) on pg 3 I POGIL Model 1 (#8)	
Thurs	I can apply stoichiometry to convert	Mass-to-Mass Problem Solving		
2/26	between mass of two different substances in a chemical reaction.	1 solve any 8 on pg 5	I solve any 4 on pg 5 (including #9) I POGIL Model 2	
Fri	I can apply stoichiometry to convert	Mass-to-Mass Problem Solving		
2/27	between mass of two different substances in a chemical reaction.	1 continue Problem Solving	$\frac{1}{2}$ Lab: NaHCO ₃ and CH ₃ COOH (pg 6)	
Mon, Tues	I can relate chemical quantities of	Stoichiometry Lab		
3/2, 3/3	reactants and products in laboratory applications of stoichiometry.	⊥ Lab: NaHCO₃ and CH₃COOH (рg 6)	Lab: SrCl ₂ and Na ₂ CO ₃ (pg 7)	
Weds	I can differentiate when to solve for	Mixed Stoichiometry		
3/4	moles/ mass of substances in a balanced chemical reaction.	↓ solve all on pg 8-9	 solve any 5 on pg 8-9 solve and create an Educreations tutorial for stoichiometry stumper 	

Date	Learning Target	Learning Activities Self-reflect and evaluate yourself as Beginning, Developing, Accomplished, or Exemplary and complete the corresponding target practice		Progress Reflection
		Beginning/ Developing	Accomplished/ Exemplary	the target and an ready to quizy test?
Thurs 3/5 _{Quiz Today}	I can differentiate when to solve for moles/ mass of substances in a balanced chemical reaction.	Introduction to Limiting Reactants <u>1</u> Quiz on Stoichiometry (1, 2, 3 steps) <u>1</u> Limiting Reactant PhET (pg 10-11)		
Fri 3/5	I can calculate the theoretical yields of products by analyzing the limiting reactant.	Limiting	Reactants 1 solve any 2 on pg 13 1 Lab: Limiting Reactant Balloons	
Mon, Tues 3/9, 3/10	I can experimentally analyze the theoretical and percent yield of a chemical reaction.	Percent Yield Lab		
Weds 3/11	I can relate chemical quantities of reactants and products in real world and laboratory applications of stoichiometry.	Stoichiometry Pra I finalize data analysis for Lab (#5-8 on pg 18) I see point system for practical applications of stoichiometry	 ▲ finalize data analysis for Lab (#5-8 on pg 18) ▲ solve and create an Educreations tutorial for 1 stoichiometry stumper 	
Thurs 3/12	I can relate chemical quantities of reactants and products in real world and laboratory applications of stoichiometry.	Review		
Fri 3/13	Test Retakes: The	edit <u>prior</u> to taking the test.		

Beginning = I need more help on this - I don't really understand it at all!

Developing =I kind of understand, but I need to spend more time reviewing/practicing.

Accomplished = I understand! I'm confident and can explain what I've learned on a test.

Exemplary = I could teach someone who knows nothing about this target everything they need to know.