Basic Structure of a Cell

Intro Cells – Movie Trailer

IE + PLAYLIST | 21/38 Introduction to Cells

Recall: What Are the Main Characteristics of Life?

- 1. Require ENERGY (food)
- 2. REPRODUCE (species)
- 3. Maintain HOMEOSTASIS
- 4. ORGANIZED and made of cells
- 5. ADAPT to environment
- 6. GROW and DEVELOP

LEVELS OF ORGANIZATION Nonliving Levels: 1. ATOM (element) 2. MOLECULES (4 organic macromolecules: carbohydrates, lipids, nucleic acids & proteins) 3. ORGANELLES (nucleus, ER, Golgi ...)

LEVELS OF ORGANIZATION

- Living Levels:
- CELL (makes up ALL organisms)
 TISSUE (cells working together
- 3. ORGAN (heart, brain, stomach ...)
- 4. ORGAN SYSTEMS (respiratory, circulatory ...)
- 5. ORGANISM

Nonliving Levels

ATOMS → MOLECULES → ORGANELLES

Living Levels

CELLS – life starts here

 \rightarrow

TISSUES – Similar cells working together

More Living Levels

Lymphatic Respiratory Digestive System System System Urinary Reproductive System System

ORGANS

→ ORGAN → SYSTEMS

ORGANISM

Different tissues working together Different organs working together

History of Cells & the Cell Theory

First to View Cells In 1665, Robert Hooke used a microscope to examine a thin slice of cork (dead plant cell walls)

 What he saw looked like small boxes

First to View Cells

- Hooke is responsible for naming <u>cells</u>
- Hooke called them "CELLS" because they looked like the small rooms (cells) that monks lived in

Anton van Leeuwenhoek

• In 1673, Leeuwenhoek (a Dutch microscope maker), Was first to view a LIVING organism Leeuwenhoek used a simple microscope to view pond water & scrapings from his teeth

Beginning of the Cell Theory In 1838, a German botanist named **Matthias Schleiden** concluded that all plants are made of cells Schleiden is a cofounder of the cell

theory

Beginning of the Cell Theory • In 1839, a German zoologist named Theodore Schwann concluded that all animals were also made of cells Schwann also cofounded the cell theory

Beginning of the Cell Theory

- In 1855, a German medical doctor named Rudolph Virchow observed, under the microscope, cells dividing
- He reasoned that all cells come from other preexisting cells by cell division

CELL THEORY

- 1. All living things are made of cells
- 2. Cells are the basic unit of structure and function in an organism (basic unit of life)
- 3. All cells arise from preexisting cells (reproduction/ cell division)

LYNN MARGULIS DORIC

DORION SAGAN

Discoveries Since the Cell Theory

MICROCOSMOS

FOUR BILLION YEARS OF MICROBIAL EVOLUTION

Foreword by Lewis Thomas

ENDOSYMBIOTIC THEORY

- In 1970, American biologist, Lynn Margulis, provided evidence that some organelles within cells were at one time free living cells themselves
- Supporting evidence includes organelles with their own DNA

Chloroplast and Mitochondria

Cell Size and Types

- Cells, the basic units of organisms, can only be observed under microscope
- Three Basic types of cells include:

Animal Cell

Plant Cell

Which Cell Type is Larger?

Bacteria < Animal cell < Plant cell

Scale of the Universe

CELL SIZE

Typical cells range from 5 - 50 micrometers (microns) in diameter

Number of Cells

Although ALL living things are made of cells, organisms may be:

- Unicellular composed of one cell
- Multicellular- composed of many cells that may organize into tissues, etc.

Multicellular Organisms Cells in multicellular organisms often specialize (take on different shapes & functions)

Cell Specialization

· Cells in a multicellular organism become specialized by turning different genes on and off This is known as DIFFERENTIATION

Specialized Animal Cells

Muscle cells

Red blood cells

Cheek cells

Specialized Plant cells

Guard Cells

Pollen

Prokaryotes vs. Eukaryotes

Prokaryotes - The first Cells

- Cells that lack a nucleus or membrane-bound organelles
- Includes bacteria
- Simplest type of cell
- Single, circular chromosome

Prokaryotes

- Nucleoid region (center) contains the DNA
- Surrounded by cell membrane & cell wall
- Contain ribosomes (no membrane) in their cytoplasm to make proteins

Eukaryotes

- Cells that HAVE a nucleus and membranebound organelles
- Includes protists, fungi, plants, and animals
- More complex type of cells

Eukaryotic Cell

- Contain 3 basic cell structures:
- Nucleus
- · Cell Membrane
- Cytoplasm with organelles

Two Main Types of Eukaryotic Cells

Plant Cell

Animal Cell

Animal Cell Organelles

Nucleolus Nucleus Nuclear envelope

Rough endoplasmic reticulum

Golgi apparatus

Ribosome (attached) Ribosome (free) Cell Membrane Mitochondrion Smooth endoplasmic reticulum

Centrioles

Plant Cell Organelles

